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Abstract
In this talk we considered the Affleck–Dine mechanism with various types of
the Kähler potential, and investigated whether or not the Affleck–Dine field
could acquire a large VEV as an initial condition for successful baryogenesis.
In addition to a negative Hubble-induced mass term, we found examples that
large enough Hubble-induced A-terms could also develop the minima at a
large amplitude of the field. It is concluded, therefore, that the Affleck–Dine
mechanism works for broader classes of the theories. This talk is based on
Kasuya and Kawasaki (2006 Phys. Rev. D 74 063507). Here I extend the
discussion from a more generic standpoint, and find that essentially there are
three cases that large enough A-terms develop minima at large field values.

PACS numbers: 98.80.Cq, 11.30.Fs, 11.30.Pb

1. Introduction

In the context of supersymmetry (SUSY), a promising candidate of the baryogenesis is the
Affleck–Dine mechanism [2, 3]. It utilizes a scalar field carrying the baryon charge, which
is called the Affleck–Dine field φ. In particular in the minimal supersymmetric standard
model, there are a lot of flat directions whose potential vanishes along those directions. Since
the flat directions consist of squarks and/or sleptons, it is thus natural to regard them as the
Affleck–Dine field.

During the inflationary stage, the Affleck–Dine field has a large vacuum expectation value
(VEV). Well after inflation ends, it begins rotation in its potential when the Hubble parameter
becomes the mass scale of the field, H ∼ mφ . Since the baryon number (Nœther charge) is
given by

Q =
∫

d3x
1

i
(φφ̇∗ − φ̇φ∗) = 1

2

∫
d3x ϕ2θ̇ , (1)

where φ = ϕ eiθ /
√

2, the helical motion implies baryon number production. In most cases,
the Affleck–Dine field feels spatial instabilities, and deforms into Q balls [4–10]. From the
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decay or evaporation of the formed Q balls, quarks are produced afterwards, and we have a
baryon asymmetry of the universe in usual sense.

The key ingredient for successful Affleck–Dine baryogenesis is how to obtain a large
VEV in the first place. During inflation, there appears a mass term due to SUSY breaking
by the finite energy density of the inflaton, which is called a Hubble-induced mass term. In
supergravity with the minimal Kähler potential, only a positive Hubble-induced mass term
arises, which does not make the field having a large VEV. Therefore, it is usually necessary
to have nonrenormalizable terms in the Kähler potential to obtain a negative Hubble-induced
mass term, cHH 2|φ|2 with cH < 0.

In this talk, we show the cases when the field acquires a large VEV due to the negative
Hubble-induced mass terms for some types of nonminimal Kähler potential. On the other
hand, we also consider the opposite situation that the Hubble-induced mass term is positive.
Usually in this case, the Affleck–Dine field settles down to the origin of the potential, and
cannot have a large VEV, which implies that the Affleck–Dine mechanism does not work.
The crucial observation, however, reveals that the potential will develop a (local or global)
minimum at a large amplitude of the field due to Hubble-induced A-terms during and after
inflation.

2. Affleck–Dine mechanism due to a negative Hubble-induced mass term

The potential of the flat direction vanishes only in the SUSY exact limit, and lifted by SUSY
breaking effects and nonrenormalizable operators. The general form of the potential reads as

V (φ) = m2
φ|φ|2 +

(
A

φp

pM
p−3
P

+ h.c.

)

+ cHH 2|φ|2 +

(
aHH

φq

qM
q−3
P

+ h.c.

)
+ λ2 |φ|2(n−1)

M
2(n−3)
P

. (2)

The first line represents the effect of (usual) SUSY breaking, while there are Hubble-induced
mass and A-terms in the second line due to finite energy density of the inflaton. Here
mφ ∼ O (TeV), A ∼ O(m3/2), cH ∼ O(1) and aH ∼ O(1). The last line comes from the
nonrenormalizable superpotential of the form, W(φ) = λφn

/
nMn−3

P . In general, p, q and n
could be different, but p = q = n in most cases, so we only treat this case hereafter otherwise
mentioned.

Since, in order for the Affleck–Dine field to have a large VEV during inflation, the Hubble
parameter is necessarily larger than mφ , the Hubble-induced terms dominate over the terms
due to (hidden sector) SUSY breaking at that epoch. Thus, the first line of equation (2) is
safely neglected when we consider the dynamics of the flat direction during inflation.

Let us first briefly remind the reader of the usual scenario of the Affleck–Dine mechanism.
During inflation, the flat direction settles down in the minimum of the potential, which is
determined by the balance of the nonrenormalizable term (the third line of equation (2)) and
the negative Hubble-induced mass term (the first term in the second line of equation (2) with
cH < 0). Therefore, the amplitude of the minimum is estimated as ϕmin ∼ (

HMn−3
P

)1/(n−2)

where cH , λ ∼ O(1) are assumed. After inflation when the Hubble parameter decreases
as large as the mass of the flat direction, H ∼ mφ , this minimum disappears and the
flat direction begins moving towards the origin, the only (global) minimum. At the same
time, the Hubble-induced and (hidden sector) SUSY breaking A-terms become comparable.
Since the Hubble parameter becomes also as large as the mass scale of the phase direction,
mθ ∼ (

Aϕn−2
min

/
Mn−3

P

)1/2
, the field feels torque due to the difference of the minima in the
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phase direction, and begins helical motion in the potential. This is the (dynamical) origin of
the CP violation, one of the Sakharov’s three conditions for baryogenesis. Thus, at the onset
of oscillation in the potential, the baryon number density is estimated as,

nB ∼ A

mφ

ϕn
min

Mn−3
P

∼
(

mφ

MP

) n
n−2

M3
P , (3)

for O(1) difference of the potential minima in the phase direction due to the usual and
Hubble-induced A-terms, and A ∼ mφ is used. In this scenario, the key is having a negative
Hubble-induced mass term in order for the field to acquire a large VEV during and after
inflation before the Affleck–Dine field starts its rotation.

3. Hubble-induced mass terms

In the supergravity the scalar potential is written in terms of superpotential, W , and Kähler
potential, K, as

V = eK(�,�†)/M2
P

[(
D�i

W(�)
)
K�i�j

(
D�j

W ∗(�†)
) − 3

M2
P

|W(�)|2
]
, (4)

where � denotes the scalar field in general, the subscript means the derivative with respect to
the field, F� ≡ D�W = W� + K�W

/
M2

P , and K�i�j is the inverse matrix of K�i�j
. Here

and hereafter, we neglect the contribution from the D-term. In our argument, we consider only
the flat direction φ and the inflaton I with W = W(φ) + W(I).

During inflation the scalar potential is dominated by the energy of inflaton. We can thus
write the effective potential of the inflaton as

V (I) � eK(I,I †)/M2
P

[
(DIW(I))KIĪ

(
DĪW

∗(I †)
) − 3

M2
P

|W(I)|2
]
. (5)

In order to have positive potential energy, the first term in the parenthesis dominates:
|DIW(I)| >∼ |W(I)|/MP . Since the total energy density is dominated by the inflaton, we
can relate it to the Hubble parameter as V (I) � 3H 2M2

P . In the inflaton oscillation dominated
era after inflation, the same formula is applicable if one regards I as its amplitude. For
|I | ∼ MP , we have DIW(I) ∼ HMP and W(I) <∼ HM2

P .
The negative Hubble-induced mass terms should exist well after inflation until H ∼ mφ ,

so we must thus seek for the case with |I | � MP , even when |I | ∼ MP during inflation. It is
then necessary to equip nonminimal Kähler potential, because the minimal Kähler potential
always results in a positive Hubble-induced mass term, which is shown shortly. In this case,
we have KIĪ � 1, |FI | � HMP and |W(I)| � HM2

P .
Now we consider if the Hubble-induced mass terms become positive or negative for

|I | � MP . We take the following five (the minimal and four nonminimal) Kähler potentials
as typical examples:

Km = φ†φ + I †I, (6)

δK1 = a

M2
P

φ†φI †I, (7)

δK2 = b

2MP

I †φφ + h.c., (8)

δK3 = c

4M2
P

I †I †φφ + h.c., (9)
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δK4 = d

MP

Iφ†φ + h.c. (10)

For the minimal Kähler potential, only cases (a) and (b) are nonzero. As is well known,
in this case, the Hubble-induced mass term has a positive coefficient:

cH = 3 +

(
eK(I,I †)|FI |2

V (I)
− 1

)
� 3, (11)

where the last equality holds for |I | � MP .
Therefore, the nonminimal Kähler potential should be sought for obtaining negative

Hubble-induced mass terms. In each case we consider, we obtain the Hubble-induced mass
term cH H 2|φ|2 with

cH �




3(1 − a) for Km + δK1,

3(1 + b2) for Km + δK2,

3 for Km + δK3,

3(1 + d2) for Km + δK4,

(12)

for |I | � MP . The only possibility for a negative Hubble-induced mass term is introducing
δK1 with a > 1.

If this is the only way for getting large VEVs during and after inflation, one may not seem
it very natural to have a successful Affleck–Dine mechanism. However, we show below that
large enough A-terms could lead the field to acquire large VEVs.

4. Large VEV by Hubble-induced A-terms

In this section, we describe how the effective potential acquires the minima at the large VEV
due to Hubble-induced A-terms, even if the Hubble-induced mass term is positive. Considering
only the second and third lines of equation (2), and rewriting as φ = ϕ eiθ /

√
2, we have the

potential of the form

V (ϕ) = 1

2
cHH 2ϕ2 + λ2 ϕ2(n−1)

2n−1M
2(n−3)
P

+ aH H
ϕn

2
n
2 −1nMn−3

P

cos(nθ). (13)

For our purpose to obtain the minimum at large VEV, it is sufficient to set cos(nθ) = −1,
and consider only the particular radial direction with nθ = π . It is then obvious that the ϕ

develops another minimum at ϕmin ∼ (
HMn−3

P

)1/(n−2)
, provided that the following condition

is met:

a2
H > 4(n − 1)λ2cH . (14)

Since the curvature at this minimum is of order H 2, the field rapidly settles down there during
inflation. One might worry when this minimum is a local minimum. However, the transition
rate is approximately P ∼ exp

(−M4
P

/
V (φ)

) � 1 unless the dip and hill are extremely
degenerate. Of course, one can set a little more severe condition a2

H > n2λ2cH , to make
the dip as a global minimum. In any case, chaotic condition in the early inflationary stage
will make the Affleck–Dine field settle into the minimum at a large VEV with of order O(1)

probability.
The evolution of the field is very similar to that in the case of the negative Hubble-induced

mass term, since the field value of the newly developed minimum is almost the same if the
parameters such as aH , cH and λ are of order unity: ϕA,min ∼ (

HMn−3
P

)1/(n−2)
. After the field
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stuck into the minimum during inflation, it will stay there until H ∼ mφ when the Hubble-
induced A-term is overcome by the usual A-terms due to SUSY breaking by hidden sector.
Thus, the field starts oscillation around the origin, and simultaneously feels torque to move
along the phase direction. Since the field value and the power of the torque at the onset of the
oscillation are the same as in the case of negative Hubble-induced mass term, the produced
baryon number at that time is estimated as, for O(1) difference in the phases,

nB ∼ A

mφ

ϕn
A,min

Mn−3
P

∼
(

mφ

MP

) n
n−2

M3
P , (15)

which is the same order of magnitude as equation (3). Thus, the following evolution of the
field should be similar, and hence we obtain almost the same amount of the baryon asymmetry
of the universe.

For |I | � MP , the minimal Kähler potential leads only to vanishing Hubble-induced
A-terms, so nonminimal ones are necessarily required, not only for developing minima at
large VEV but for obtaining the dynamical CP violation. The only nonvanishing Hubble-
induced A-terms appear for δK2 and δK4 among which we considered1:

−
√

3b Wφ φ†H + h.c for δK2, (16)

−
√

3d WφφH + h.c for δK4. (17)

Although the A-terms of the case with δK2 look a bit weird, the abilities to have minima
at large amplitude and CP violation are the same. The only difference is that minima in
the phase direction are fewer by two. In either case, the minima will appear for |b|, |d| >

2(n − 1)1/2/(n − 2).
For a more general case that q �= n in equation (2) with all the coefficients being O(1),

it is easy to see that q < n is required in order to have (local) minima at large VEV. Let the
φ-dependence as K ∝ φr + h.c and W ∝ φn. Since the A-term proportional to H comes from
(DφW)KφĪ (DĪW

∗) + h.c, it is proportional to φr+n−2. This implies q = r + n − 2, leading
to r = 1. However, gauge-invariant monomials in MSSM are constructed at least by two
fields. Therefore, it works only for the case with q = n for a sufficiently large coefficient in
the A-term.

Since q must not be larger than n, the Kähler potential should have only two φs, namely,
φφ or φ†φ. Also KφĪ should not depend upon the inflaton field I in order to have non-vanishing
A-term for |I | � MP . Thus, δK2 and δK4 are the only working examples for obtaining the
minima in the large field value regime.

For completeness, let us consider the A-term proportional to H 2. As a result, it works

only for such a term as H 2φ2 + h.c. This can be realized by δK = g

2M2
P

I †Iφφ + h.c with

g > CH � 3.

5. Conclusions

We have shown how the Affleck–Dine baryogenesis works in the context of supersymmetric
theory. Special attention is paid to the initial condition of the Affleck–Dine field which has to
have a large VEV during and after inflation. In the usual situations, the large VEV is achieved
by a negative Hubble-induced mass term due to SUSY breaking by the finite energy density
of the inflaton. We seek for the origin of the negative Hubble-induced mass terms for various
Kähler potentials.

1 Here we correct these formulae in [1]. W(φ) in equation (A12) in [1] should be replaced by Wφφ.
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The most important fact that we have found here is that the minima at large VEV can
be obtained by large enough Hubble-induced A-terms, even if the Hubble-induced mass term
is positive. Since A-terms have minima irrespective of the signature of the coupling in the
nonminimal Kähler potential, it is robust for the Affleck–Dine field to have large VEV during
and after inflation. Thus, the Affleck–Dine mechanism for baryogenesis works in broader
classes of theories.
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